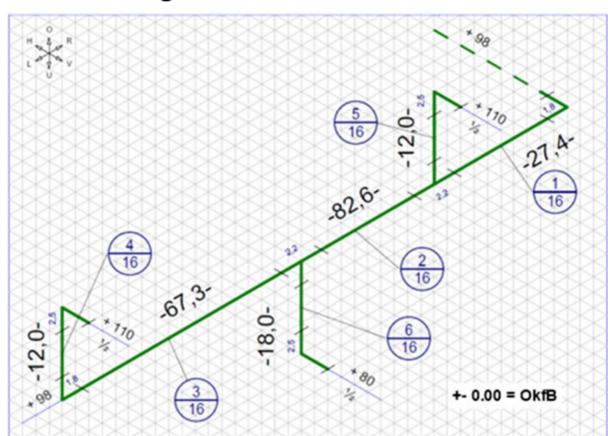
Name:

MOXIE – gewusst wie


Checklisten AVOR z- und X-Mass

HaustechnikpraktikerIn Sanitär EBA
SanitärinstallateurIn EFZ
GebäudetechnikplanerIn Sanitär EFZ

Autor:


Fachgruppe Sanitär

Auflage 2024

Musterlösung z-Mass

Ro	hrl	ängen, Ki	ürzunge	n					St	ückliste			
Nr.		Bezeichnung	Rohrweite		M - M in cm	Abzug - cm	Rohrlänge cm	Kürz. Bem.	Stk.	Bezeichnung	Rohrweite	Mat.	Bestell- Nummer
1	1	Rohr	ø 16	MEP	27,4	-1,8 -2,2	23,4	5.4	2	Winkel 90°	o 16	VDF	601.27
2	1	Rohr	ø 16	MEP	82,6	-2,2 -2,2	78,2		2	T-Stück egal	o 16	VDF	601.31
3	1	Rohr	ø 16	MEP	67,3	-2,2 -1,8	63,3		3	Anschl. winkel	o 16-1/2	RG	601.293
4	1	Rohr	o 16	MEP	12,0	-1,8 -2,5	7,7						
5	1	Rohr	ø 16	MEP	12,0	-2,2 -2,5	7,3		:		1		
6	1	Rohr	ø 16	MEP	18,0	-2,2 -2,5	13,3						

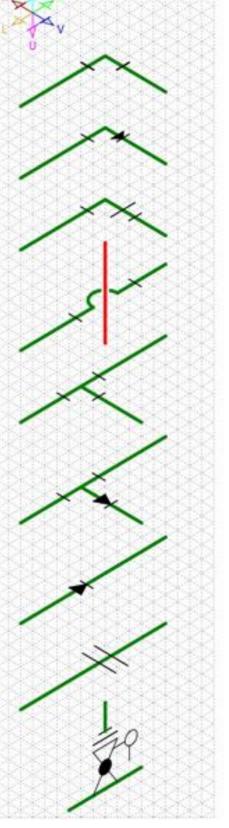
Checkliste z-Mass

- 1. Genaues Durchlesen der Aufgabenstellung. Was gehört zum Aufgabenbereich?
- 2. Vorzeichnen der Aufgabe mit Bleistift von Hand (Blattaufteilung, Leitungen, Kreuzungen usw.)

- 3. Armaturen und Spezialformstücke mit Symbolen einzeichnen
- 4. Sauberes Aufzeichnen der Aufgabe mit Bleistift, inkl. Dreiecke (Verhältnis 2:1)
- 5. Dreiecke berechnen und bemassen, inkl. Winkelangabe, Berechnung auf Blatt
- 6. Höhenkoten für Anschlüsse und T-Stücke angeben (z.B. +210) und Bezug anschreiben (z.B. +-0.00 = fertig Boden EG)
- 7. Mitte-Mitte-Masse (-25.0-) und Mitte-Aussen-Masse (25.0) bei den Teilstücken angeben
- 8. Dichtstellen einzeichnen
- 9. Dimensionen und Rohrnummern eintragen (in Flussrichtung, mit Hauptleitung beginnen)
- 10. z-Masse eintragen
- 11. Bei Fittingkombinationen, Fittingnummern im Plan angeben
- 12. Apparateanschlüsse dimensionieren
- 13. Stückliste erstellen

Mögliche Fehlerquellen:

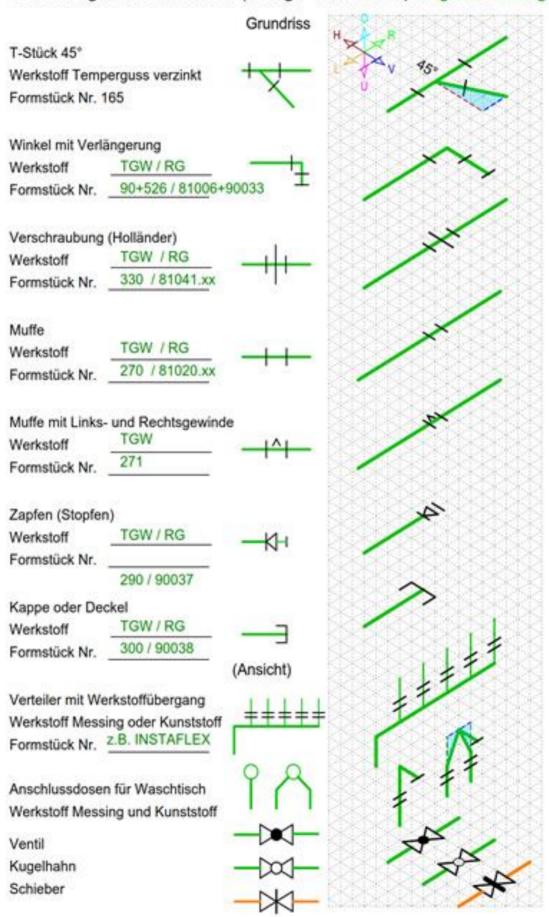
- Holländerdichtung nicht vergessen (2mm)
- Fittingkombinationen
- Keine Rohrnippel unter zwei Gewindelängen, resp. Einstecktiefen
- Werden in der Aufgabe Bogen oder Winkel verwendet?
- Dreieckberechnungen
- Muffen bei Rohrlängen die länger sind als eine Stange nicht vergessen
- Befestigungen, Dämmungen und Abpresszapfen nicht in der Stückliste aufführen
- Bei Unterputz-Installationen Verlängerungen nicht vergessen (Apparateanschlüsse bis ausserkant Putz verlängern)
- Gewindeverbindung mittlere Einschraublänge berücksichtigen



Darstellung von Formstücken (Fittings + Armaturen) mögliche Lösung

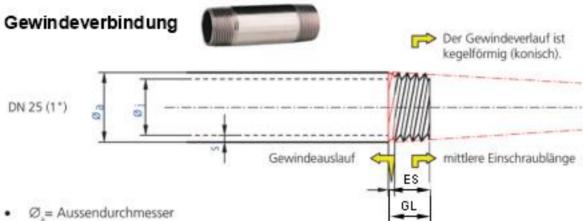
Die Darstellungssymbole sind genau an den Hilfslinien der Rasterblätter auszurichten.

Lösungen ergänzt Grundriss mit OPITRESS Bogen oder Winkel Werkstoff TGW / RG / 1.4401 Formstück Nr. 2a / 90 / 81000.xx Fromstück Nr. 80000.xx / 80001.xx Winkel reduziert TGW Werkstoff 90 Formstück Nr. Winkel mit Verschraubung TGW / RG Werkstoff 95 / 81047.xx Formstück Nr. Überbogen Werkstoff TGW / 1.4401 Formstück Nr. 85 RG (OPTIPRESS) 81086.xx T-Stück egal oder reduziert TGW / RG Werkstoff 130 / 81010.xx Formstück Nr. T-Stück mit Reduktion TGW / RG / 1.4401 Werkstoffe Formstück Nr. 130+241 / 81010.xx+81021.xx Muffe reduziert / Reduktion TGW / RG Werkstoffe 240 / 81021.xx Formstück Nr. Flanschverbindung TGW / RG Werkstoffe Formstück Nr. 329 / 81049+90050 (Ansicht) Batterieventil mit Entleerung und Verschraubung RG Werkstoff



22052

Formstück Nr.



Darstellung von Formstücken (Fittings + Armaturen) mögliche Lösung

- Ø, = Innendurchmesser
- s = Wandstärke
- ES = mittlere Einschraublänge
- GL = Gewindelänge

Gewinde- und mittlere Einschraublänge

Rohr Ø	Gewindelänge mm	Mittlere Ein- schraublänge
1/2"	15	13
3/4"	17	15
1"	19	17
5/4"	21	19
1%*	21	19
2"	26	24

Steckverbindung

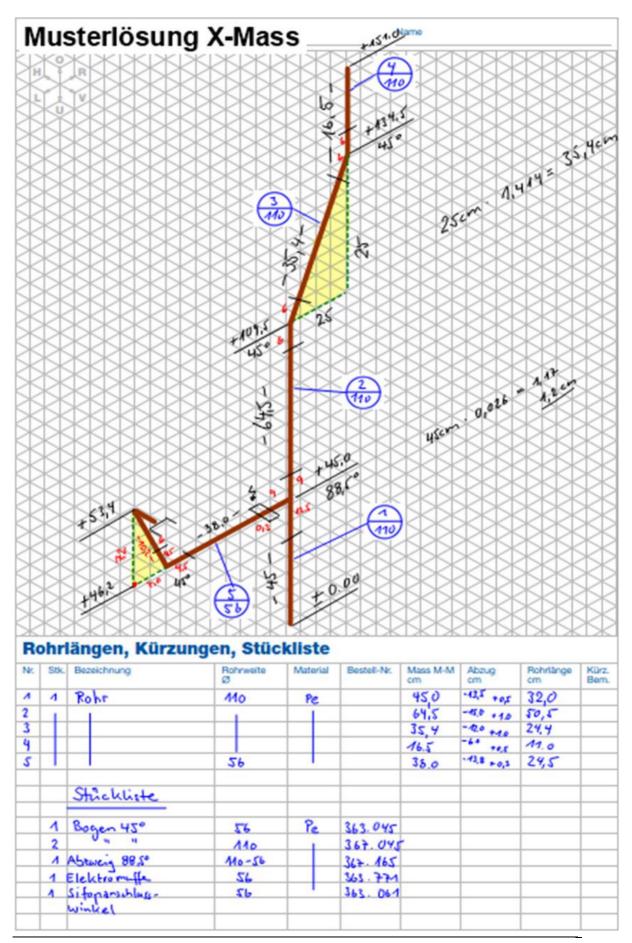
Schraub, Press-, Löt, Kleb- oder Muffenschweiss- Fittings weisen, abhängig von Rohrweite und Werkstoff bestimmte Einschraub- oder Einstecktie fen des Rohres auf.

Zieht man von der Baulänge des Formstückes (meist mit I bezeichnet) die Einschraub- oder Einstecktiefe ab, ergibt sich ein Restmass. Dieses Restmass heisst z.-Mass.

= Baulänge Formstück

= z-Mass

ES = Einstecktiefe


= Rohrdurchmesser

ES = L - z

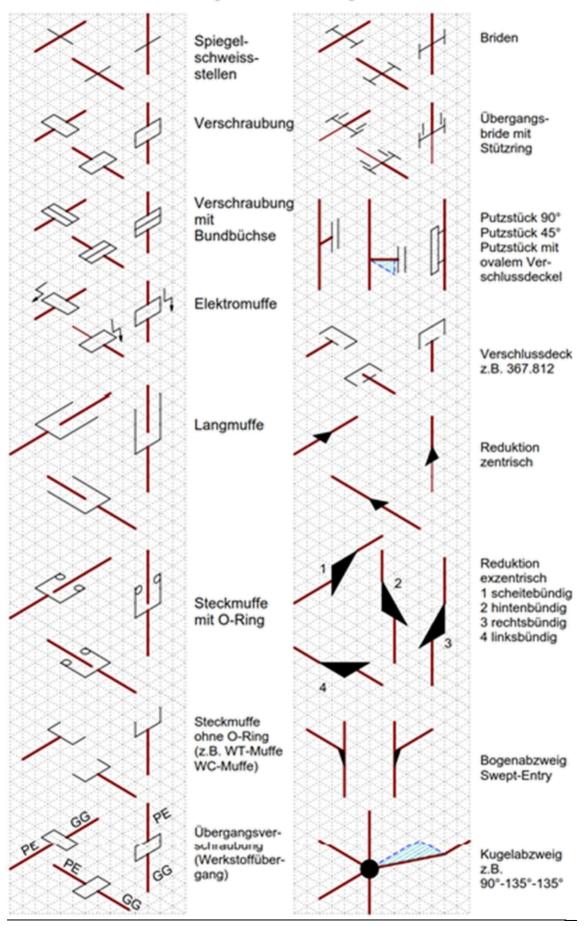
Grundbildung Sanitär AVOR

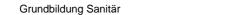
Grundbildung Sanitär AVOR

Checkliste X-Mass

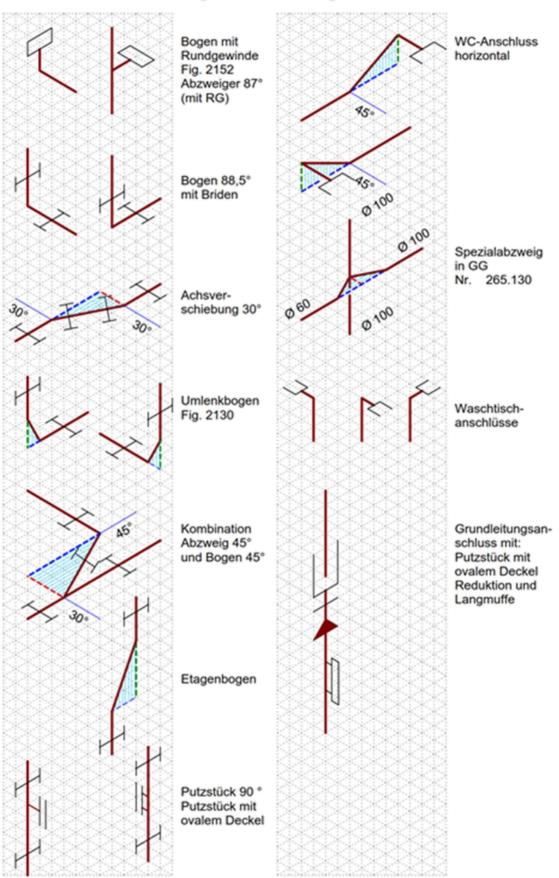
- 1. Genaues Durchlesen der Aufgabenstellung. Was gehört zum Aufgabenbereich?
- 2. Vorzeichnen der Aufgabe mit Bleistift von Hand (Blattaufteilung, Leitungen, Kreuzungen usw.)
- 3. Sauberes Aufzeichnen der Aufgabe mit Bleistift, inkl. Dreiecke (Verhältnis 2:1)
- 4. Dreiecke berechnen und bemassen, inkl. Winkelangabe, Berechnung auf Blatt
- 5. Mitte-Mitte-Masse (-25.0-) und Mitte-Aussen-Masse (25.0) bei den Teilstücken angeben
- 6. Gefälle berechnen, Berechnung auf Blatt (1.5° = 2.6 cm Gefälle pro Meter / 2° = 3.5 cm Gefälle pro Meter)
- 7. Höhenkoten bei Abzweigern, Anschlüssen und wichtigen Richtungsänderungen angeben (z.B. +28.8) und Bezug anschreiben (z.B. +-0.00 = fertig Boden EG)
- 8. X-Masse oder Formstücklängen eintragen
- 9. Überprüfen ob Kürzungen von Formstücken nötig sind
- Dichtstellen und Materialübergänge einzeichnen, Symbole für verwendete Verbindung beachten (Bride, Schweissstelle, Elektromuffe usw.)
- 11. Dimensionen und Rohrnummern eintragen, Rohre werden mit Zahlen gekennzeichnet, Kürzungen mit Buchstaben
- 12. Winkelgrade bei Abzweigern und Bogen bezeichnen
- 13. Achsmasse mit Masslinien vermassen
- 14. Rohrlängen/Kürzungen berechnen
- 15. Stückliste erstellen

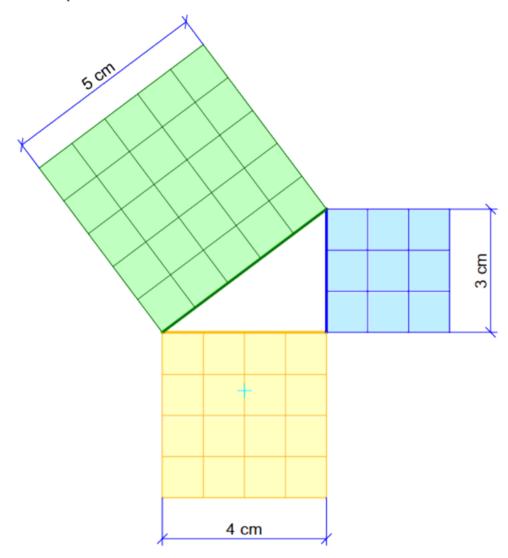
Rohr	Schweiss- zugabe pro Schweiss- naht	Schweiss- zugabe pro Schweiss- naht
	Silent- db20	Geberit PE
ø [mm]	[cm]	[cm]
56	0.3	0.3
63	0.3	0.3
75	0.4	0.3
90	0.5	0.4
110	0.6	0.5
125	-	0.5
135	0.6	-


Mögliche Fehlerquellen:


- Bridengummi abziehen (4 mm für alle Durchmesser)
- Elektromuffen-Mittelring abziehen (3 mm f

 ür alle Durchmesser)
- Formstückkombinationen mit Kürzungen
- Gefälle vergessen oder falsch berechnet
- Dreieckberechnungen
- Befestigungen und allfällige Dämmungen sind in der Stückliste nicht aufzuführen.


Zeichnerische Darstellung von Verbindungen und Formstücken


Zeichnerische Darstellung von Verbindungen und Formstücken

\bigwedge

Pythagoras

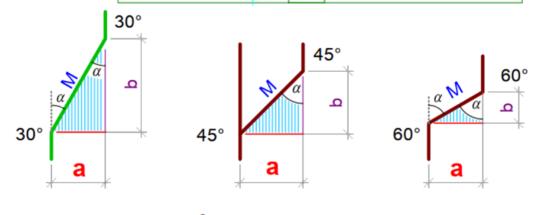
In einem rechtwinkligen Dreieck ist die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat.

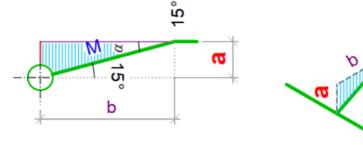
$c^2 = a^2 + b^2$	$c = \sqrt{(a^2 + b^2)}$	$5 = \sqrt{(3^2 + 4^2)}$
$a^2 = c^2 - b^2$	$a = \sqrt{(c^2 - b^2)}$	$3 = \sqrt{(5^2 - 4^2)}$
$b^2 = c^2 - a^2$	$b = \sqrt{(c^2 - a^2)}$	$4 = \sqrt{(5^2 - 3^2)}$

Grundbildung Sanitär

AVOR

Grundbildung Sanitär AVOR


1 Faktorentabelle


Von der Senkrechten und Waagrechten abweichende Teile einer Installation lassen sich nur in wenigen Fällen genau anzeichnen. Genaue Rohrlängen erzielt man durch rechtwinkliges Messen und Ermitteln der restlichen (Dreieck-) Seitenlängen. Hierfür stehen uns auch Faktorentabellen zur Verfügung.

In der Zeichnung steht für die Dreieckseite c der Buchstabe M, Mitte - Mitte!

Bogen ° Abzweig °	gegeben a	Faktor c = M	Faktor b
15°	1,0	3,864	3,732
30°	1,0	2,000	1,732
45°	1,0	1,414	1,000
60°	1,0	1,155	0,577
75°	1,0	1,035	0,268

a x Faktor c =	С	: Faktor c = a
a x Faktor b =	b	: Faktor b = a

Beispiel 1:

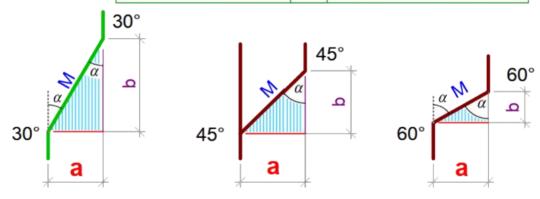
gegeben: a = 17,2 cm / Bogen = 15° gesucht: M=c= 17,2 cm x 3,864 = 66,4 cm gesucht: b = 17,2 cm x 3,732 = 64,2 cm

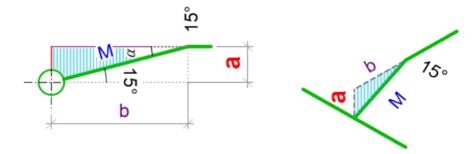
Beispiel 2:

gegeben: M=c= 27,4 cm / Bogen = 30° gesucht: a = 27,4 cm : 2,0 = 13,7 cm gesucht: b = 13,7 cm x 1,732 = 23,7 cm

150

Grundbildung Sanitär




2 Faktorentabelle

Von der Senkrechten und Waagrechten abweichende Teile einer Installation lassen sich nur in wenigen Fällen genau anzeichnen. Genaue Rohrlängen erzielt man durch rechtwinkliges Messen und Ermitteln der restlichen (Dreieck-) Seitenlängen. Hierfür stehen uns auch Faktorentabellen zur Verfügung.

Bogen ° Abzweig °	Faktor a	gegeben M = C	Faktor b
15°	0,259	1,000	0,966
30°	0,500	1,000	0,866
45°	0,707	1,000	0,707
60°	0,866	1,000	0,500
75°	0,966	1,000	0,259

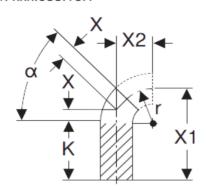
a : Faktor a =	С	x Faktor a = a
b : Faktor b =	С	x Faktor b = b

Beispiel 1:

gegeben: $a = 17,2 \text{ cm / Bogen} = 15^{\circ}$ gesucht: M=c=17,2 cm: 0,259 = 66,4 cm

gesucht: b = 66,4 cm x 0,966 = 64,2 cm

Beispiel 2:


gegeben: M=c= 27,4 cm / Bogen = 30° gesucht: a = 27,4 cm x 0,5 = 13,7 cm gesucht: b = 27,4 cm x 0,866 = 23,7 cm

Kürzungs- und X-Masse für PE Bögen 90°

Art.-Nr. xxx.055.16.1

X Minimale Schenkellänge [cm]X1 Maximale Schenkellänge [cm]

X2 X2 = r

K Kürzungsmass [cm] α Winkel des Bogens

Radius des Bogens [cm]

	d32 d40	d50 d56	d63 + Silent	d75	d90	d110 + Silent	d125	d160
X2 [cm]	3.0	4.0	5.0	7.0	9.0	10.0	11.0	14.0
Winkel α			Min	imale Sch [c	nenkellän m]	ge X		
90°	3.0	4.0	5.0	7.0	9.0	10.0	11.0	14.0
88.5°	2.9	3.8	4.9	6.8	8.8	9.7	10.7	13.6
87°	2.8	3.8	4.7	6.6	8.5	9.5	10.4	13.3
85°	2.7	3.7	4.6	6.4	8.2	9.2	10.0	12.8
80°	2.5	3.4	4.2	5.9	7.6	8.4	9.2	11.7
75°	2.3	3.1	3.8	5.4	6.9	7.7	8.5	10.7
70°	2.1	2.8	3.5	4.9	6.3	7.0	7.7	9.8
67.5°	2.0	2.7	3.4	4.7	6.0	6.7	7.4	9.4
65°	1.9	2.5	3.2	4.5	5.7	6.4	7.0	8.9
60°	1.7	2.3	2.9	4.0	5.2	5.8	6.4	8.1
55°	1.6	2.1	2.6	3.6	4.7	5.2	5.7	7.3
50°	1.4	1.9	2.3	3.3	4.2	4.7	5.1	6.5
45°	1.2	1.7	2.1	2.9	3.7	4.1	4.5	5.8
43.5°	1.2	1.6	2.0	2.8	3.6	4.0	4.4	5.6
40°	1.1	1.5	1.8	2.5	3.3	3.6	4.0	5.1
35°	0.9	1.3	1.6	2.2	2.8	3.2	3.5	4.4
30°	0.8	1.1	1.3	1.9	2.4	2.7	3.0	3.8
25°	0.7	0.9	1.1	1.6	2.0	2.2	2.5	3.1
22.5°	0.6	0.8	1.0	1.4	1.8	2.0	2.2	2.8
20°	0.5	0.7	0.9	1.2	1.6	1.8	2.0	2.5
15°	0.3	0.5	0.7	0.9	1.2	1.3	1.5	1.8

Alle Geberit PE Bögen xxx.055.16.1 können um das Mass "**K**" am langen Schenkel gekürzt werden.

Tabelle 47: Kürzungsmasse

,										
	d32	d40	d50	d56	d63	d75	d90	d110	d125	d160
Kürzungsmass K [cm]	7	12	14	17	16	14	15	17	9	6

Grundbildung Sanitär AVOR

Einstecktiefe Geberit PE Langmuffe

Die Einstecktiefe der Geberit PE Langmuffe ist von der Montagetemperatur abhängig. Im folgenden Beispiel wird der Unterschied der Einstecktiefen bei 0 °C und 20 °C anhand der Geberit PE Langmuffe d110 gezeigt.

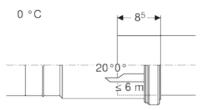


Bild 18: Einstecktiefe von 8.5 cm bei d110 und einer Montagetemperatur von 0 °C

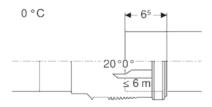

Bild 19: Einstecktiefe von 10.5 cm bei d110 und einer Montagetemperatur von 20 °C

Tabelle 76: Einstecktiefe in cm in Abhängigkeit von der Dimension der Geberit PE Langmuffe und der Montagetemperatur

d	Montagetemperatur											
[mm]	-10 °C	0 °C	10 °C	20 °C	30 °C	40 °C	50 °C					
32	3.5	4.0	5.0	5.5	6.0	6.5	7.0					
40–56	6.5	7.5	8.5	9.5	11.0	12.0	13.0					
63–90	7.0	8.0	9.5	10.5	11.5	12.5	13.5					
110	7.5	8.5	9.5	10.5	12.0	13.0	14.0					
125-160	8.0	9.0	10.0	11.0	12.0	13.5	14.5					
200–315	17.0	18.0	19.0	20.5	21.5	22.5	23.5					

Einstecktiefe Silent-db20 Langmuffe

Die Einstecktiefe der Geberit Silent-db20 Langmuffe ist von der Montagetemperatur und der Dimension der Langmuffe abhängig.

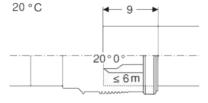
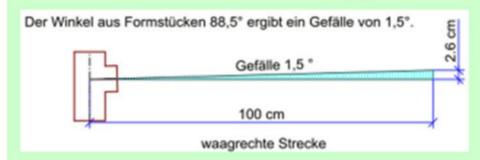


Bild 11: Einstecktiefe von 6.5 cm bei d110 und einer Montagetemperatur von 0 °C

Bild 12: Einstecktiefe von 9.0 cm bei d110 und einer Montagetemperatur von 20 °C

Tabelle 57: Einstecktiefe in cm für Geberit Silent-db20 Langmuffe in Abhängigkeit von der Dimension der Langmuffe und der Montagetemperatur


d	Montagetemperatur								
[mm]	-10 °C	0 °C	10 °C	20 °C	30 °C	40 °C	50 °C		
75	5.3	6.3	7.5	8.8	10.0	11.3	12.5		
90	5.3	6.3	7.5	8.8	10.0	11.3	12.5		
110	5.5	6.5	7.7	9.0	10.2	11.5	12.7		
135	6.0	7.0	8.3	9.5	10.8	12.0	13.3		
160	6.3	7.3	8.6	9.8	11.1	12.3	13.6		

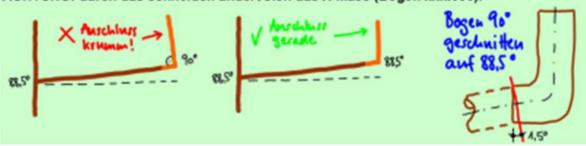
X-Mass Gefälle

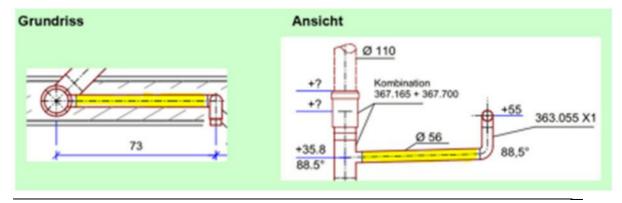
Liegende Abwasserleitungen sind mit Gefälle zu verlegen.

Das Gefälle wird durch die Formstücke von 88.5° vorgegeben.

Die 1,5° entsprechen 2,6% Gefälle. Mit diesem Wert rechnen wir an der Schule immer. In der Praxis ist ein Gefälle von 1% bis 5% möglich, je nach Gegebenheiten.

2,6% Gefälle heisst...


auf eine Strecke von 100 cm (100%) beträgt das Gefälle 2,6%, also 2,6 cm.


Wir merken uns: pro Meter Rohrlänge wird 2,6 cm Gefälle benötigt

Durch das Gefälle ändert sich auch der benötigte Winkel für eine senkrechte Leitung, welche aus einer liegenden Leitung angeschlossen wird.

Ein 90°-Bogen kann nicht mehr verwendet werden, da sonst die senkreche Leitung krumm ist. Der Bogen ist dem Gefälle entsprechend zuzuschneiden.

ACHTUNG: durch das schneiden ändert sich das X-Mass (Bogen xxx.055)!

7.1.5 Berechnung des seitlichen Versatzes unter Berücksichtigung des Gefälles

Mithilfe der Berechnung von stumpfwinkligen Dreiecken, kann der seitliche Versatz von Anschlussleitungen mit einem gekröpften Anschluss ausgelegt werden.

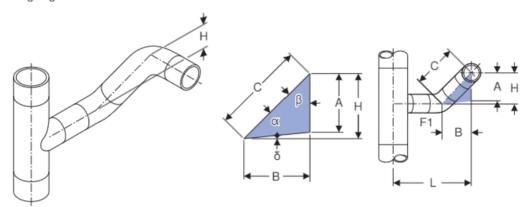


Bild 17: Grundlagen für die Berechnung von stumpfwinkligen Dreiecken

Zur einfachen Dreiecksberechnung siehe Tools und Apps unter www.geberit.ch.

Tabelle 75: Faktoren zur Berechnung von stumpfwinkligen Dreiecken

C [cm]	δ	α	β	A [cm]	B [cm]	H [cm]
		15°	73.5°	0.2589	0.9588	0.2840
		30°	58.5°	0.5002	0.8526	0.5225
1	1.5°	45°	43.5°	0.7073	0.6884	0.7254
		60°	28.5°	0.8663	0.4772	0.8788
		75°	13.5°	0.9663	0.2334	0.9724

Berechnungsbeispiel des seitlichen Versatzes

Höhe A ist bekannt. A = 20 cm

- · Gegeben:
 - Neigungswinkel δ = 1.5°
 - Formstückwinkel F1 = 45°
- · Gesucht:
 - C, B, H

Lösuna:

C = 20 cm : 0.7073 = 28.276 cm

B = 20 cm : 0.7073 • 0.6884 = 19.466 cm

H = 20 cm : 0.7073 • 0.7254 = 20.512 cm

Berechnungsbeispiel des seitlichen Versatzes

Länge C ist bekannt. C = 20 cm

- Gegeben:
 - Neigungswinkel δ = 1.5°
 - Formstückwinkel F1 = 45°
- · Gesucht:
 - A, B, H

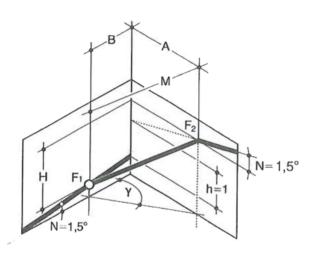
Lösung:

A = 20 cm • 0.7073 = 14.146 cm

B = 20 cm • 0.6884 = 13.768 cm

H = 20 cm • 0.7254 = 14.508 cm

Grundbildung Sanitär


AVOR

von Roll

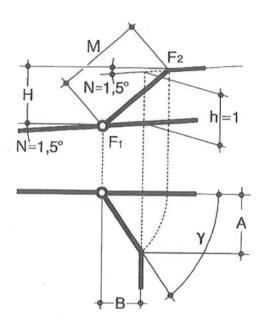

Überkröpfung. h = 1 1,5° Neigung der Achsen Collecteur à 88½° avec combinaison gauchie à 88½° h = 1 Sovrapposizione h = 1 Inclinazione asse 1,5°

Tabelle 3 - Tabella 3

Isometrische Darstellung Représentation isométrique Proiezione isometrica

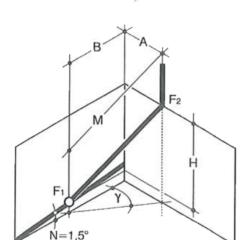
HB-Darstellung
Représentation HB
Rappresentazione HB

Formstückwinkel Combinaison Angolo del pezzo

Grundrisswinkel Angle de projection Angolo di base

F1	F2	M	A	В	H	γ
30°	75°	2,33394	0,57633	1,99399	1,06731	16,121°
45°	60°	1,99667	0,97088	1,38453	1,06168	35,039°
45°	75°	1,51818	0,36591	1,04672	1,03699	19,269°
60°	45°	1,99668	1,38455	0,97087	1,06168	54,961°
60°	60°	1,41275	0,67950	0,67949	1,03559	45°
60°	75°	1,20901	0,28624	0,57792	1,02263	26,349°
75°	30°	2,33397	1,99402	0,57633	1,06731	73,879°
75°	45°	1,51819	1,04673	0,36591	1,03699	70,732°
75°	60°	1,20901	0,57793	0,28623	1,02263	63,652°
75°	75°	1,07377	0,25148	0,25147	1,01317	45°

Grundbildung Sanitär


AVOR

von Roll

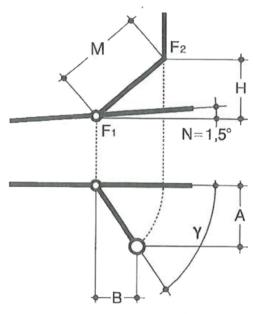

Verschränkung. A = 1 Liegende mit 1,5° Neigung zur Senkrechten Collecteur à $88'/_2$ ° avec combinaison gauchie. A = 1 Deviazione A = 1 Collettore con combinazione su verticale e pendenza 1,5°

Tabelle 1 - Tabella 1

Isometrische Darstellung Représentation isométrique Proiezione isometrica

HB-Darstellung Représentation HB Rappresentazione HB

Formstückwinkel Combinaison Angolo del pezzo

Grundrisswinkel Angle de projection Angolo di base

		1.			
F1	F2	M	В	H	γ
15°	75°	8,9760	8,6123	2,3232	6,623°
30°	60°	6,7420	5,7525	3,3710	9,862°
30°	75°	2,2692	1,9509	0,5873	27,144°
45°	45°	6,2611	4,3129	4,4273	13,054°
45°	60°	1,9316	1,3411	0,9658	36,711°
45°	75°	1,5038	1,0535	0,3892	43,507°
60°	30°	6,7420	3,2193	5,8388	17,256°
60°	45°	1,9316	0,9304	1,3659	47,065°
60°	60°	1,3965	0,6802	0,6983	55,776°
60°	75°	1,2042	0,5942	0,3117	59,283°
75°	15°	8,9760	2,0969	8,6702	25,496°
75°	30°	2,2692	0,5361	1,9652	61,806°
75°	45°	1,5038	0,3615	1,0633	70,125°
75°	60°	1,2042	0,2960	0,6021	73,510°
75°	75°	1,0725	0,2704	0,2776	74,869°