

Name		Datum
Zirkulationsberechnung	Objekt	

1. Wärmestrom

Tabelle 1 Berechnung Wärmestrom

А	В	С	D	E	F
TS	Länge <i>I</i>	⊅ m	$\phi_{TS} = I \cdot \phi_{m}$	$oldsymbol{\phi}_{ ext{tot}}$	TS ϕ_{tot}
Nr.	m	W/m	W	W	Nr.
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

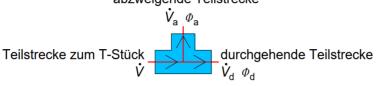
Zirkulationsberechnung Vorlage_V04 / © Copyright by MOXIE

2. Pumpenvolumenstrom

$$\Phi_{\text{tot}} = W$$

$$c = 4.187 \quad kJ/(kg \cdot K)$$

$$\dot{m}_{\rm p} \triangleq \dot{V}_{\rm p} = \frac{\Phi_{\rm tot}}{c \cdot \Delta \theta}$$


$$\left[\dot{m}_{p} \triangleq \dot{V}_{p}\right] = \frac{kJ \cdot kg \cdot K}{s \cdot kJ \cdot K} = \frac{kg}{s} \triangleq \frac{l}{s}$$

Berechnung Pumpenvolumenstrom:

$$\dot{V}_{P}$$
 = I/s
$$= \frac{I/h}{I/min}$$
= m³/h

3. Teilvolumenströme

abzweigende Teilstrecke

$$\dot{V}_{a} = \dot{V} \cdot \frac{\Phi_{a}}{\Phi_{a} + \Phi_{d}}$$

$$\dot{V}_{a} = \dot{V} - \dot{V}$$

$$\begin{bmatrix} \dot{V}_{a} \end{bmatrix} = \frac{1 \cdot W}{h \cdot W} = \frac{1}{h}$$
$$\begin{bmatrix} \dot{V}_{d} \end{bmatrix} = \frac{1}{h}$$

Hinweis: Formel im Kurz + Bündig korrigieren (S. 49)!

$$\left[\dot{V}_{\rm d}\right] = \frac{1}{h}$$

Tabelle 2 Berechnung Teilvolumenströme

А	В	С	D	E	F
TS	ம ு ம்	Φ _d ⇒	V	V _a	\dot{V}_d
Nr.	W	W	l/h	l/h	l/h
1					
2					
3					
4					
5					

Berechnung Teilvolumenströme:

4. Hydraulische Berechnung

Tabelle 3 Hydraulische Berechnung

Α	В	С	D	Е	F	G	Н	I	J
TS	Material, System, Fabrikat	Rohr- weite	Länge	EW	Länge Total	Volumen- strom	Fliess- geschw.	∆ <i>p</i> pro Meter	∆ <i>p</i> Total
	Fabrikat		I	<u></u> %	I _{tot}	V	w	Δρ	Δp_{tot}
		Ø	m	m	m	l/h	m/s	mbar/m	mbar
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									

Hinweise

- Beim herauslesen des Druckverlustes in den Tabellengrundlagen, immer die Werte des näherliegenden Volumenstroms einsetzen
- Rohrweitenbestimmung nach Fliessgeschwindigkeit (w = 0.3 1.0 m/s).

5. Druckverlust pro Zirkulationsstrang

Tabelle 4 Druckverlust pro Zirkulationsstrang

А	В	С	D
TS	Strang 1	Strang 2	Strang 3
	mbar	mbar	mbar
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
Total			

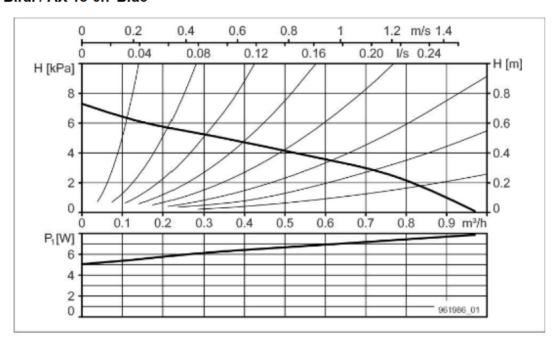
6. Auslegung Zirkulationspumpe

Pumpenvolumenstrom (Übertrag)	\dot{V}_{P} =	l/min
	=	m³/h
Volumenstrom ungünstigster Zirkulationsstrang (Übertrag)	$\dot{V}_{P,Str} =$	l/h
Linguinatigator Zirkulatianaatrana	=	l/min
Ungünstigster Zirkulationsstrang:	=	m³/h

Tabelle 5 Auslegung Zirkulationspumpe

А	Druckverlust ungünstigster Zirkulationsstrang	mbar
В	Druckverlust Rückflussverhinderer (teilw. in Pumpe eingebaut)	mbar
С	Druckverlust Regulierorgan (ungünstigster Zirkulationsstrang) bei voller Öffnung	mbar
D	Druckverlust weitere Armaturen (z.B. therm. Mischer)	mbar
	Förderhöhe rechnerisch (Total Druckverlust)	mbar
Е	p _{theo}	kPa
	$ extcolor{h}_{theo}$	m
	Pumpenvolumenstrom	l/s
F	V _P	I/h
	•	m³/h

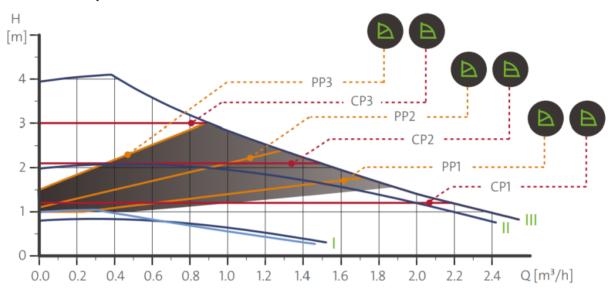
$$h_{\text{theo}} = \frac{p_{\text{theo}}}{\rho \cdot g}$$


$$\left[h\right] = \frac{Pa \cdot m^3 \cdot s^2}{kg \cdot m} = \frac{kg \cdot m \cdot m^3 \cdot s^2}{s^2 \cdot m^2 \cdot kg \cdot m} = m$$

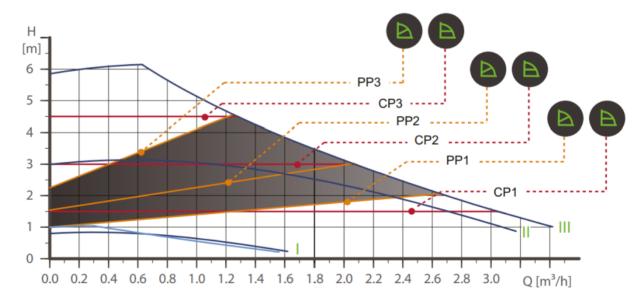
1 mbar ≙ 100 Pa ≙ 0,1 kPa

Pumpen mit konstanter Drehzahl für kleine Objekte (EFH)

Biral / AX 15-0.7 Blue



Pumpe drehzahlreguliert für grössere Objekte


Var. 1 Rote Linien = Konstantdruck, versch. Stufen (CP1, CP2, CP3)

Var. 2 Blaue Linie = Konstantdrehzahl, versch. Stufen (I, II, III)

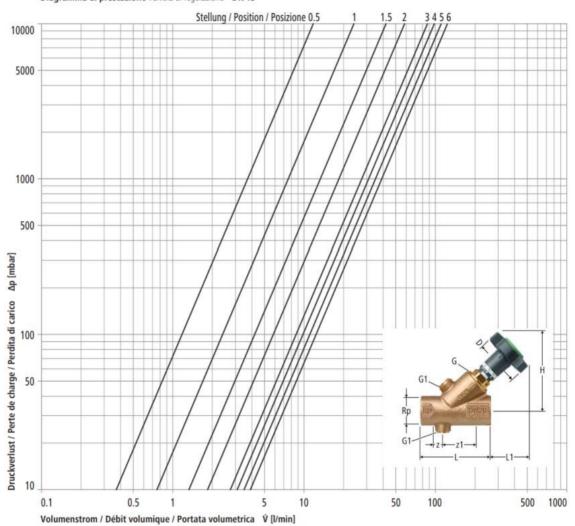
Grundfos / Alpha2 15-40

Grundfos / Alpha2 15-60

Pumpe	gewählt		
- abrikat	: Тур:		
	Betriebsart / Stufe:		
Γabelle 6 l	Effektive Betriebspunkte		
			mbar
Α	Förderhöhe effektiv <i>h</i> _{eff} ≙ <i>p</i> _{eff} gemäss Pumpendiagramm	$oldsymbol{ ho}_{eff}$	kPa
		$oldsymbol{h}_{eff}$	m
	,		I/s
В	Pumpenvolumenstrom \dot{V}_P gemäss Berechnung (bleibt bei Auslegung unveränd	ert)	l/h
			m³/h

7. Auslegung Druckverlust Regulierorgane

Tabelle 7 Auslegung Druckverlust Regulierorgane

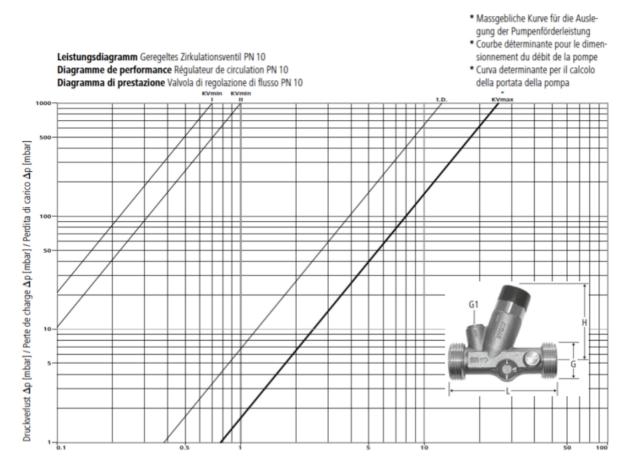

		nach Einregulierung	nach Einregulierung	nach Einregulierung
		Strang 1	Strang 2	Strang 3
А	Volumenstrom	l/h	l/h	l/h
A	Volumensuom	l/min	l/min	l/min
В	Förderhöhe Zirkulationspumpe effektiv <i>p</i> _{eff}	mbar	mbar	mbar
С	minus ∆p Leitungen	mbar	mbar	mbar
D	minus ∆ <i>p</i> RV	mbar	mbar	mbar
E	minus Δp weitere Armaturen (z.B. therm. Mischer)	mbar	mbar	mbar
F	Druckerverlust Regulierorgan Δ <i>p</i> _D	mbar	mbar	mbar

8. Auslegung Regulierorgane

Mech. Regulierorgan Typ 24022 DN 15

Leistungsdiagramm Regulierventil – DN 15 Diagramme de performance Robinet de réglage – DN 15 Diagramma di prestazione Valvola di regolazione – DN 15

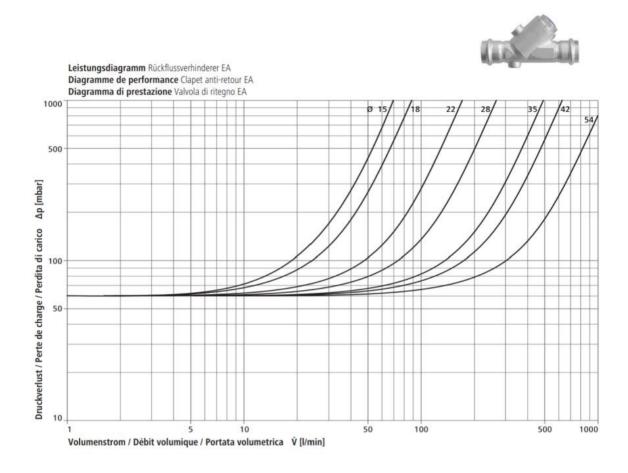
Gewählt


Strang 1: Ventilstellung / Position _____

Strang 2: Ventilstellung / Position _____

Strang 3: Ventilstellung / Position _____

thermisches Regulierorgan Typ 36010


Volumenstrom V [l/min] / Débit volumique V [l/min] / Portata volumetrica V [l/min]

Gewählt

- Strang 1: Volumenstrom Voreinstellung _____
- Strang 2: Volumenstrom Voreinstellung _____
- Strang 3: Volumenstrom Voreinstellung _____

9. Anhang Druckverlust Rückflussverhinderer

10. Anhang Druckverlust «rostfreie Stahlrohre (CNS)

	d _a x s [mm]			[mm]		s [mm]		x s [mm]
	12:	x 1.0	15 x 1.0		18 x 1.0		22 x 1.2	
V.	w	Δp	w	Δp	w	∆p	w	Δp
l/h	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m
10	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
15	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
20 25	0.1 0.1	0.1 0.1	0.0 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
30	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
35	0.1	0.3	0.1	0.1	0.0	0.0	0.0	0.0
40	0.1	0.4	0.1	0.1	0.1	0.0	0.0	0.0
45	0.2	0.5	0.1	0.1	0.1	0.0	0.0	0.0
50 55	0.2	0.6 0.7	0.1 0.1	0.2	0.1	0.1 0.1	0.0	0.0
60	0.2	0.7	0.1	0.2	0.1	0.1	0.1	0.0 0.0
65	0.2	1.0	0.1	0.3	0.1	0.1	0.1	0.0
70	0.3	1.1	0.2	0.3	0.1	0.1	0.1	0.0
75	0.3	1.3	0.2	0.4	0.1	0.1	0.1	0.1
80	0.3	1.4	0.2	0.4	0.1	0.2	0.1	0.1
85 90	0.3 0.3	1.6 1.7	0.2 0.2	0.5 0.5	0.1 0.1	0.2 0.2	0.1 0.1	0.1 0.1
95	0.3	1.9	0.2	0.6	0.1	0.2	0.1	0.1
100	0.4	2.1	0.2	0.6	0.1	0.2	0.1	0.1
110	0.4	2.5	0.2	0.7	0.2	0.3	0.1	0.1
120	0.4	2.9	0.3	0.8	0.2	0.3	0.1	0.1
130 140	0.5 0.5	3.3 3.8	0.3 0.3	1.0 1.1	0.2 0.2	0.4 0.4	0.1 0.1	0.1 0.2
150	0.5	4.3	0.3	1.2	0.2	0.5	0.1	0.2
160	0.6	4.8	0.3	1.4	0.2	0.5	0.1	0.2
170	0.6	5.3	0.4	1.5	0.2	0.6	0.2	0.2
180	0.6	5.9	0.4	1.7	0.2	0.6	0.2	0.2
190 200	0.7 0.7	6.4 7.1	0.4 0.4	1.9 2.0	0.3 0.3	0.7 0.8	0.2 0.2	0.3 0.3
210	0.7	7.7	0.4	2.2	0.3	0.8	0.2	0.3
220	0.8	8.3	0.5	2.4	0.3	0.9	0.2	0.3
230	0.8	9.0	0.5	2.6	0.3	1.0	0.2	0.4
240 250	0.9	9.7	0.5	2.8	0.3	1.0	0.2	0.4
260	0.9	10.4 11.2	0.5 0.5	3.0	0.3 0.4	1.1 1.2	0.2	0.4
270	1.0	11.9	0.6	3.4	0.4	1.3	0.2	0.5
280	1.0	12.7	0.6	3.7	0.4	1.4	0.3	0.5
290	1.0	13.5	0.6	3.9	0.4	1.4	0.3	0.6
300	1.1	14.3	0.6	4.1	0.4	1.5	0.3	0.6
310 320	1.1 1.1	15.2 16.0	0.7 0.7	4.4 4.6	0.4 0.4	1.6 1.7	0.3 0.3	0.6 0.7
330	1.1	16.9	0.7	4.9	0.4	1.8	0.3	0.7
340	1.2	17.8	0.7	5.1	0.5	1.9	0.3	0.7
350	1.2	18.8	0.7	5.4	0.5	2.0	0.3	0.8
360	1.3	19.7	0.8	5.7	0.5	2.1	0.3	0.8
370 380	1.3 1.3	20.7 21.7	0.8 0.8	5.9 6.2	0.5 0.5	2.2 2.3	0.3 0.3	0.8 0.9
390	1.4	22.7	0.8	6.5	0.5	2.3	0.3	0.9
400	1.4	23.7	0.8	6.8	0.6	2.5	0.4	1.0
410	1.5	24.7	0.9	7.1	0.6	2.7	0.4	1.0
420	1.5	25.8	0.9	7.4	0.6	2.8	0.4	1.1
430 440	1.5 1.6	26.9 28.0	0.9 0.9	7.7 8.1	0.6 0.6	2.9 3.0	0.4 0.4	1.1 1.1
450	1.6	29.1	0.9	8.4	0.6	3.1	0.4	1.2
460	1.6	30.3	1.0	8.7	0.6	3.2	0.4	1.2
470	1.7	31.4	1.0	9.0	0.6	3.4	0.4	1.3
480	1.7	32.6	1.0	9.4	0.7	3.5	0.4	1.3
490	1.7	33.8	1.0	9.7 10.1	0.7	3.6	0.5	1.4
500	1.8	35.0	1.0	10.1	0.7	3.8	0.5	1.4

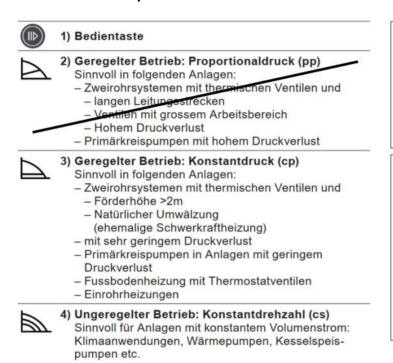
11. Anhang Druckverlust «Pex-Rohre»

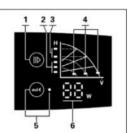
	d _a x s [mm] 12 x 1.7		d _a x s 14 x		d _a x s [mm] 16 x 3.8		
Ů.							
l/h	m/s	Δ p mbar/m	w m/s	Δ p mbar/m	w m/s	Δ p mbar/m	
10	0.0	0.1	0.1	0.1	0.1	0.1	
15	0.1	0.1	0.1	0.2	0.1	0.2	
20	0.1	0.2	0.1	0.2	0.1	0.2	
25	0.1	0.2	0.1	0.3	0.1	0.3	
30	0.1	0.5	0.2	0.6	0.2	0.6	
35 40	0.2 0.2	0.7 0.9	0.2 0.2	0.7 0.9	0.2 0.2	0.8 1.0	
45	0.2	1.1	0.2	1.1	0.2	1.2	
50	0.2	1.3	0.2	1.4	0.3	1.4	
55	0.3	1.5	0.3	1.6	0.3	1.7	
60	0.3	1.8	0.3	1.9	0.3	2.0	
65 70	0.3 0.3	2.0 2.3	0.3 0.3	2.1 2.4	0.3 0.4	2.3 2.6	
76 75	0.3	2.6	0.3	2.4	0.4	2.9	
80	0.4	2.9	0.4	3.1	0.4	3.2	
85	0.4	3.2	0.4	3.4	0.4	3.6	
90	0.4	3.6	0.4	3.8	0.5	4.0	
95	0.5	3.9	0.5	4.1	0.5	4.4	
100 110	0.5 0.5	4.3 5.1	0.5 0.5	4.5 5.4	0.5 0.6	4.8 5.7	
120	0.6	5.1	0.6	6.2	0.6	6.6	
130	0.6	6.8	0.6	7.2	0.7	7.6	
140	0.7	7.8	0.7	8.2	0.7	8.6	
150	0.7	8.8	0.7	9.2	8.0	9.7	
160	0.8	9.8	0.8	10.3	0.8	10.9	
170	0.8	10.9	0.8	11.5	0.9	12.1	
180 190	0.9 0.9	12.1 13.2	0.9 0.9	12.7 13.9	0.9 1.0	13.4 14.7	
200	1.0	14.5	1.0	15.3	1.0	16.1	
210	1.0	15.8	1.0	16.6	1.1	17.6	
220	1.1	17.1	1.1	18.0	1.1	19.1	
230	1.1	18.5	1.1	19.5	1.2	20.6	
240 250	1.1 1.2	19.9 21.4	1.2 1.2	21.0 22.5	1.2 1.3	22.2 23.8	
260	1.2	22.9	1.3	24.1	1.3	25.5	
270	1.3	24.5	1.3	25.8	1.4	27.3	
280	1.3	26.1	1.4	27.5	1.4	29.1	
290	1.4	27.8	1.4	29.2	1.5	30.9	
300 310	1.4 1.5	29.5 31.2	1.5 1.5	31.0 32.8	1.5	32.8 34.7	
320	1.5	33.0	1.6	32.8 34.7	1.6 1.6	34.7	
330	1.6	34.8	1.6	36.6	1.7	38.7	
340	1.6	36.7	1.7	38.6	1.7	40.8	
350	1.7	38.6	1.7	40.6	1.8	42.9	
360	1.7	40.5	1.8	42.7	1.8	45.1	
370 380	1.8 1.8	42.5 44.6	1.8 1.9	44.7 46.9	1.9 1.9	47.3 49.6	
390	1.9	46.6	1.9	49.1	2.0	51.9	
400	1.9	48.7	2.0	51.3	2.0	54.2	
410	2.0	50.9	2.0	53.6	2.1	56.6	
420	2.0	53.1	2.1	55.9	2.1	59.1	
430 440	2.1 2.1	55.3 57.6	2.1 2.2	58.2 60.6	2.2 2.2	61.6 64.1	
450	2.1	57.6 59.9	2.2	60.6 63.0	2.2	66.7	
460	2.2	62.2	2.3	65.5	2.3	69.3	
470	2.2	64.6	2.3	68.0	2.4	71.9	
480	2.3	67.1	2.4	70.6	2.4	74.6	
490	2.3	69.5	2.4	73.2	2.5	77.4	
500	2.4	72.0	2.5	75.8	2.5	80.2	

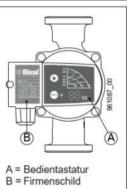
(Fortsetzung)

		s [mm]		[mm]	d _a x	s [mm]	da	x s [mm]
	16	x 2.0	16 x 2.2		20 x 2.0		20 x 2.8	
V	w	Δp	w	Δp	w	Δp	w	Δp
l/h	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m	m/s	mbar/m
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20 25	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
30	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
35	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0
40	0.1	0.1	0.1	0.2	0.1	0.0	0.1	0.0
45	0.1	0.1	0.1	0.3	0.1	0.0	0.1	0.1
50 55	0.1 0.1	0.3	0.1 0.1	0.3 0.4	0.1 0.1	0.1 0.1	0.1	0.1 0.1
60	0.2	0.4	0.2	0.4	0.1	0.1	0.1	0.2
65	0.2	0.4	0.2	0.5	0.1	0.1	0.1	0.2
70	0.2	0.5	0.2	0.6	0.1	0.1	0.1	0.2
75	0.2	0.5	0.2	0.6	0.1	0.1	0.1	0.2
80 85	0.2 0.2	0.6 0.7	0.2 0.2	0.7 0.8	0.1 0.1	0.2 0.2	0.1 0.1	0.3 0.3
90	0.2	0.7	0.2	0.9	0.1	0.2	0.1	0.3
95	0.2	8.0	0.2	0.9	0.1	0.2	0.2	0.3
100	0.3	0.9	0.3	1.0	0.1	0.2	0.2	0.4
110	0.3	1.0	0.3	1.2	0.2	0.3	0.2	0.4
120 130	0.3 0.3	1.2 1.4	0.3 0.3	1.4 1.6	0.2 0.2	0.3 0.4	0.2 0.2	0.5 0.6
140	0.4	1.6	0.4	1.9	0.2	0.4	0.2	0.7
150	0.4	1.8	0.4	2.1	0.2	0.5	0.3	8.0
160	0.4	2.0	0.4	2.4	0.2	0.5	0.3	8.0
170 180	0.4 0.4	2.2	0.4	2.6	0.2	0.6	0.3	0.9
190	0.4	2.5 2.7	0.5 0.5	2.9 3.2	0.3 0.3	0.6 0.7	0.3 0.3	1.0 1.1
200	0.5	3.0	0.5	3.5	0.3	0.8	0.3	1.2
210	0.5	3.2	0.6	3.8	0.3	8.0	0.4	1.4
220	0.5	3.5	0.6	4.1	0.3	0.9	0.4	1.5
230 240	0.6 0.6	3.8 4.1	0.6 0.6	4.4 4.8	0.3 0.3	1.0 1.0	0.4 0.4	1.6 1.7
250	0.6	4.4	0.7	5.1	0.4	1.1	0.4	1.8
260	0.6	4.7	0.7	5.5	0.4	1.2	0.4	2.0
270	0.7	5.0	0.7	5.9	0.4	1.3	0.5	2.1
280 290	0.7 0.7	5.3 5.7	0.7 0.8	6.3 6.7	0.4 0.4	1.4 1.5	0.5 0.5	2.2 2.4
300	0.7	6.0	0.8	7.1	0.4	1.5	0.5	2.5
310	0.8	6.4	0.8	7.5	0.4	1.6	0.5	2.7
320	0.8	6.8	0.8	7.9	0.4	1.7	0.5	2.8
330	0.8	7.1 7.5	0.9	8.4	0.5	1.8	0.6	3.0
340 350	0.8 0.9	7.5 7.9	0.9 0.9	8.8 9.3	0.5 0.5	1.9 2.0	0.6 0.6	3.2 3.3
360	0.9	8.3	0.9	9.7	0.5	2.1	0.6	3.5
370	0.9	8.7	1.0	10.2	0.5	2.2	0.6	3.7
380	0.9	9.1	1.0	10.7	0.5	2.3	0.6	3.8
390	1.0	9.5 10.0	1.0	11.2 11.7	0.5	2.4	0.7	4.0
400 410	1.0 1.0	10.0 10.4	1.1 1.1	11.7	0.6 0.6	2.5	0.7	4.2 4.4
420	1.0	10.9	1.1	12.8	0.6	2.8	0.7	4.6
430	1.1	11.3	1.1	13.3	0.6	2.9	0.7	4.8
440	1.1	11.8	1.2	13.8	0.6	3.0	0.8	5.0
450 460	1.1 1.1	12.3 12.7	1.2 1.2	14.4 15.0	0.6 0.6	3.1	0.8	5.2 5.4
470	1.1	13.2	1.2	15.5	0.6	3.4	0.8	5.6
480	1.2	13.7	1.3	16.1	0.7	3.5	0.8	5.8
490	1.2	14.2	1.3	16.7	0.7	3.6	8.0	6.0
500	1.2	14.7	1.3	17.3	0.7	3.8	0.9	6.2

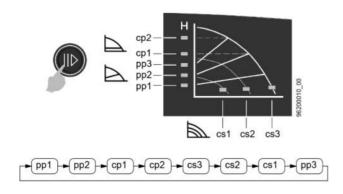
12. Anhang Regelung Zirkulationsumwälzpumpe


Für Zirkulationspumpen können verschiedene Bautypen und Betriebsarten eingesetzt werden. Kleine Anlagen ergeben kleine Volumenströme und somit auch kleinere Pumpen. Im Markt werden drehzahlregulierte Pumpen erst bei grösseren Pumpenleistungen (Volumenstrom/Förderhöhe) angeboten. Würde es kleinere, drehzahlregulierte Pumpen geben, würde man sie überall einsetzten. Somit halten wir fest:


• Kleine Anlagen (EFH) Pumpen mit Konstantdrehzahl (ungeregelt)


• Mittlere und grössere Anlagen Pumpen mit Konstantdruck (geregelt)

• Die Betriebsart Proportionaldruck wird bei der Zirkulation nicht eingesetzt.


Betriebsarten Pumpe

Einstellung Betriebsart Pumpe

Quellennachweis: Pumpendiagramme und Pumpenangaben gem. Unterlagen der Fa. Grundfos und Biral.

13. Notizen		